

NORTHWEST NAZARENE UNIVERSITY

Robotic Manipulators Using Deep Meta Reinforcement Learning

to Catch Objects in Space

THESIS
Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements

for the degree of

BACHELOR OF ARTS

Aaron Borger

2022

THESIS
Submitted to the Department of Mathematics and Computer Science

in partial fulfillment of the requirements

for the degree of

BACHELOR OF ARTS)

Aaron Borger

2022

Robotic Manipulators Using Deep Meta Reinforcement Learning

to Catch Objects in Space

Author:

__
Aaron Borger

Approved:

__
Dale Hamilton, Ph.D., Associate Professor of Computer Science
Department of Mathematics and Computer Science, Faculty Advisor

Approved:

__
Stephen Parke, Ph.D., Professor of Electrical Engineering Department of
Engineering and Physics, Second Reader

Approved:

__

Barry L. Myers, Ph.D., Chair,
Department of Mathematics & Computer Science

iii

Abstract

Robotic Manipulators Using Deep Meta Reinforcement Learning to Catch Objects in Space

BORGER, AARON (Department of Mathematics and Computer Science),

HAMILTON, DR. DALE (Department of Mathematics and Computer Science).

This work proposes a method to train an artificial intelligent robot in simulation and then

re-train it in the real-world space environment. This method utilizes a meta learning

algorithm that allows an agent to re-train while in space and learn to catch an object with a

robotic manipulator after only a few shots. This work seeks to develop the building block

for intelligent astro-robotics by learning to catch a ball in space. Subsequent versions may

be able to use the same method to learn to grasp uncontrollable, non-uniform objects in

space. This effort will be beneficial towards solving multiple challenging problems such

as assembling and servicing spacecraft in orbit by learning to manipulate tools and

components in zero gravity as well as space debris removal by learning to catch resident

space objects. The reinforcement learning algorithm at the core combines the Twin

Delayed Deep Deterministic Policy Gradients algorithm (TD3) with the implicit model-

agnostic meta-learning algorithm (iMAML). This new algorithm allows for efficient few-

shot learning with continuous observations, such as the position and velocity of the object

as detected by a Mask Region-Based Convolutional Neural Network (MR-CNN), and

continuous actions such as the location, orientation, and time of the grasp.

iv

Acknowledgements

I would like to begin by thanking the students on the Rocksat team who spent countless

hours making this insane idea of a project a reality: Jonathan Herberger, Riley Mark,

Juliette Haggith, Nathan Appleby, Samuel Mark, Jacob Sutherland, Jakob Waltman, Cole

McCall, and Camden McGath. Thank you for your hard work and friendship.

In addition, I would not have been able to succeed in completing this project without

the expertise of my professors who helped me avoid numerous pitfalls: Dr. Dale Hamilton,

Dr. Dan Lawrence, Dr. Autumn Pratt, and Dr. Stephen Parke. Without you, I would still

be writing my thesis as I attempt to cram every little detail into it or making wire harnesses

with fifteen connectors when I could have used one.

Finally, I would like to thank NASA’s Idaho Space Grant Consortium and Colorado

Space Grant Consortium for funding this project and the RockSat-X program. You have

given me the opportunity to gain the experience required to accomplish my dream of

working in both artificial intelligence and aerospace industries.

v

Table of Contents

Abstract ... iii

Acknowledgements .. iv

List of Figures .. vii

1. Introduction ... 1

2. Background ... 3

2.1. Solving Rubik’s Cube with a Robot Hand ... 3

2.2. Optimal Stroke Learning with Policy Gradient Approach 4

2.3. 6-DOF GraspNet .. 4

2.4. MAML Algorithm ... 5

2.5. Meta-Learning with Implicit Gradients (iMAML Algorithm) 6

2.6. TD3 Algorithm... 7

3. Experiment Overview ... 10

4. Artificial Intelligence Subsystem .. 12

4.1. Subsystem Overview ... 12

4.2. Object Detection .. 14

4.3. Kalman Filter ... 15

4.4. Catching Agent .. 20

4.5. Trajectory Prediction ... 24

4.6. Grasp Generator ... 28

vi

4.7. Meta TD3 Algorithm ... 29

5. Discussion ... 32

References .. 36

Appendix .. 39

vii

List of Figures

Figure 1.1 - Payload Design (Launch Configuration) .. 2

Figure 1.2 - Simulated Throw and Catch Maneuver... 2

Figure 2.1 - GraspNet VAE Diagrm ... 5

Figure 2.2 - General TD3 Exploration Diagram ... 7

Figure 2.3 - TD3 Critic Update Diagram .. 9

Figure 4.1 - AI Subsystem Flow Diagram .. 12

Figure 4.2 - Object Detection with Similar Background .. 15

Figure 4.3 - Kalman Filter Block Diagram ... 16

Figure 4.4 - Catching Agent Exploration Diagram ... 20

Figure 4.5 - AI Learning Kinematic Possible Catches ... 22

Figure 4.6 - Average Reward During Training Session ... 23

Figure 4.7 - Trajectory Slice Denormalization ... 24

Figure 4.8 - 2D Trajectory of an Object ... 27

Figure 4.9 - Distance from Object to Robot Base ... 27

Figure 4.10 - iMAML Algorithm (Rajeswaran et al., 2019) 30

Figure 4.11 - Meta-TD3 Training ... 32

https://d.docs.live.net/a396c41a266a44d3/Documents/Senior%20Year/CS%20Senior%20Project/CS%20Thesis%20Draft.docx#_Toc100565788
https://d.docs.live.net/a396c41a266a44d3/Documents/Senior%20Year/CS%20Senior%20Project/CS%20Thesis%20Draft.docx#_Toc100565789

1

1. Introduction

Current space fairing robotics struggle to adapt to varying tasks and environments.

Intelligent space fairing robots have the potential to assist astronauts and solve

challenging problems such as space debris removal, collision avoidance, and in-orbit

spacecraft servicing and assembly. Current space fairing robots require manual control,

which may prove difficult for distant uncrewed missions where communication times

deem remote control impractical. Remote control will also hinder large robotic

workforces as the necessity for human involvement would be too great. Deep

Reinforcement Learning (Deep RL) has demonstrated it can learn solutions to complex

problems, such as solving a Rubix Cube with a dexterous robotic hand (OpenAI et al.,

2019). This technology could be revolutionary in the aerospace industry as an

intelligent, dexterous robotic hand and arm combo could learn to perform tasks in space

and decrease the need for human involvement.

This work aims to develop adaptive robotic arms that train in simulation and then

complete a complex task in the real-world space environment. The complex task

involves, two robotic arms that throw and catch a ball in space. The main contribution

of this work is to demonstrate deep meta reinforcement learning can bridge the gap

between simulation and the harsh environment of space and should become a focus for

developing intelligent robots for the aerospace industry.

2

Figure 1.1 displays a simulated version of the robotic arms in the launch

configuration. After the skirt of the rocket deploys and the robotic arms are exposed to

the vacuum of space, the arms will move to the extended position and begin the

experiment, as shown in Figure 1.2.

Figure 1.1 - Payload Design (Launch Configuration)

Figure 1.2 - Simulated Throw and Catch Maneuver

3

2. Background

Recently, deep reinforcement learning (deep RL) has become a standard method to

enable robots to adapt to changes in the environment (Mahmood et al., 2018). Deep RL

is a branch of machine learning that combines learning through trial and error

(reinforcement learning) with deep neural networks (deep learning). OpenAI has

provided an extensive repository of deep RL documentation (Achiam, 2018). Although

deep RL has shown promising results, reinforcement learning simulates learning

through trial and error, which requires attempting a task thousands of times before the

agent is successful. Training for deep RL is impractical for robots as their mechanical

parts may not be able to endure the training process. In addition, creating an

environment that a robot can train in without human involvement is impractical, if not

impossible. Artificial intelligence researchers have begun to train intelligent robots in

simulations and then deploy them into real-world robots to solve this issue. Training

an agent in simulation is a challenging task as it is nearly impossible to simulate the

physical world perfectly. However, recent advancements have shown it is possible to

overcome the imperfections in simulators (Cutler & How, 2015; Koos et al., 2010). The

following publications discuss methods helpful towards learning how to catch objects

in space.

2.1. Solving Rubik’s Cube with a Robot Hand

OpenAI developed a robotic hand that learned with reinforcement learning in

simulation to solve a Rubix cube in the real world. OpenAI demonstrated training in

simulation with domain randomization (randomizing aspects of the environment to

4

generate a large dataset), and meta-learning could successfully transfer simulated

learning to real-world performance. However, OpenAI was able to test the performance

of their algorithm multiple times as their goal was to complete a task on Earth. If

MARSHA combines domain randomization and meta-learning, the model does not

need to be successful from training in simulation alone because it can continue to learn

while in space (OpenAI et al., 2019). In addition, once the arm catches an object, a

combination of MARSHA and OpenAI’s robotic hand could be used to complete

complex procedures in space.

2.2. Optimal Stroke Learning with Policy Gradient Approach

(Gao et al., 2021) proposes a method to use the TD3 algorithm to learn the optimal

stroke to hit a ping pong ball at the desired target and does so by training in simulation

and then performing the task in the real world. Catching and hitting an object are similar

problems so this paper has provided many valuable ideas.

2.3. 6-DOF GraspNet

Nvidia developed a method of generating and evaluating grasps from 3D point

clouds of non-uniform shaped objects with a variational auto-encoder (VAE) and grasp

evaluator network (Mousavian et al., 2019). The GraspNet learns grasps by encoding

successful grasp configurations to a latent space and then using that as well as the point

cloud as the input to the decoder network which outputs a reconstructed grasp. This can

be trained by using the difference between the reconstructed grasp and the original

grasp as the loss. After training is complete, random grasps can be generated by using

5

random variables for the latent space. A distribution of these grasps are then evaluated

with an evaluator network where the highest scoring one is chosen. MARSHA has been

designed to be easily adjusted to learn how to catch non-uniform shaped objects.

Currently MARSHA’s action space contains spherical coordinates that represent the

grasp. Therefore, the decoder is simply a manual conversion between spherical

coordinates in the object space to a grasp vector. The TD3 algorithm was chosen due

to its continuous action space as reconstructed grasps no longer need to be evaluated as

MARSHA can directly output the latent space representation of the optimum grasp

configuration. Figure 2.1 shows a diagram from the paper that demonstrates the VAE.

Figure 2.1 - GraspNet VAE Diagrm

2.4. MAML Algorithm

While OpenAI’s Rubix cube solver (OpenAI et al., 2019) implements meta learning

with an LSTM, a model-agnostic meta-learning (MAML) method (Finn et al., 2017)

can be implemented with any model or algorithm. In the reinforcement learning version

of the model-agnostic method, two sets of models are learned, a meta-model and a

mesa-model. The mesa model’s parameters are initialized with the meta model’s

parameters. The mesa model is then trained with just a few episodes in a specific task

6

or environment. After the mesa model has been trained the meta model is updated with

stochastic gradient descent where the loss function is simply the inverse of the reward

function. This is repeated over multiple tasks or environments until the meta-model

learns parameters that can be trained with a few shots to succeed in an unseen task or

environment. In the case of astro-robotics, meta-learning could allow robots to learn

how to manipulate objects or maneuver in varying levels and orientations of gravity.

Machine learning usually requires a large amount of data to produce sufficient results,

but (Finn et al., 2017) show that meta-learning is capable of solving few shot learning

problems where there are only a few opportunities to learn.

2.5. Meta-Learning with Implicit Gradients (iMAML Algorithm)

Model-Agnostic Meta-Learning (MAML) is an algorithm that allows meta-learning

to be used for any neural network architecture or reinforcement learning algorithm

(Finn et al., 2017). The iMAML algorithm is the sequel to MAML and features a far

more efficient way to calculate the gradients of gradients required to learn how to learn

(Rajeswaran et al., 2019). Both methods involve calculating the initial parameters

(weights and biases) that minimize the loss on multiple tasks after the initial parameters

are retrained in a few shots. In MAML, the meta-gradient is calculated by

differentiating over every operation required to train the parameters for each task and

then summing the gradients. This calculation would be very expensive and would take

a long period of time to perform on a super-computer, much less a Jetson Nano.

iMAML proposes a solution to this problem by approximating the gradients.

(Rajeswaran et al., 2019). Section 5.6 describes how iMAML is combined with the

7

TD3 algorithm to allow meta reinforcement learning with continuous observations and

actions.

2.6. TD3 Algorithm

The Twin Delayed Deep Deterministic Policy Gradients Algorithm (TD3) was

proposed by (Fujimoto et al., 2018). TD3 is a deep reinforcement learning algorithm,

so it combines deep neural networks with reinforcement learning (learning through trial

and error). TD3 is an off-policy algorithm so it collects percepts from the environment,

performs an action to “explore” the environment and then receives a reward for how

well that action achieved the given goal. However, rather than an on-policy algorithm

which would update its parameters after every iteration, the percept, action, and reward

are stored in a replay buffer to be trained on later. (Achiam, 2018; Fujimoto et al.,

2018). Figure 2.2 shows a block diagram for one iteration of this loop.

Figure 2.2 - General TD3 Exploration Diagram

8

The TD3 algorithm is also an actor critic algorithm. Therefore, the actor network

shown in Figure 2.2 is responsible for producing an action given the percepts and a

critic network is used to estimate the Q-values similar to Q-learning and the deep Q

network (DQN) (Mnih et al., 2013; Watkins & Dayan, 1992). Reinforcement learning

uses a reward value to determine how good an action was given the percepts, but the

use of Q-values allows for temporal difference learning or the ability to predict the

future rewards that may be gained from the chosen action (Barto, 2007). While the

DQN algorithm can estimate the Q-value for a discrete set of actions with a single

neural network, the actor-critic method uses two neural networks (actor network and

critic network) to estimate the Q-value for a continuous set of actions from a continuous

set of states or percepts. However, the TD3 algorithm utilizes an additional Critic

network similar to the Double DQN algorithm which decreases the overestimation of

the Q-function due to temporal difference learning (van Hasselt et al., 2015). Figure

2.3 demonstrates how the double Q-functions are used in the TD3 algorithm where

(𝑠, 𝑎, 𝑟) is a state, action, and reward sample.

The diagrams in Figure 2.2 and Figure 2.3 are simplified diagrams that are useful

for understanding the algorithm. However, they do not include the actor and critic target

networks that are copies of the main networks and are updated less frequently to

stabilize learning (Achiam, 2018; Fujimoto et al., 2018; Mnih et al., 2013).

9

Figure 2.3 - TD3 Critic Update Diagram

The final distinction between the TD3 algorithm and its predecessors such as the

Double DQN and Deep Deterministic Policy Gradient Algorithm is the target policy

smoothing trick. Gaussian noise is added to the actions the target actor produces as

shown in Figure 2.2. This random noise prevents the actor network from exploiting

errors in the Q-function (Achiam, 2018; Fujimoto et al., 2018). An in-depth explanation

of how the TD3 algorithm is implemented to catch objects is given is Section 4.4.

(𝑠, 𝑎, 𝑟)

10

3. Experiment Overview

Artificial intelligence has already been shown to be capable of performing complex

tasks with robots such as solving a Rubix cube (OpenAI et al., 2019). The goal of this

experiment is to determine if artificial intelligent robots can be used to perform

complex tasks in space. Background research has shown that deep reinforcement

learning and the Twin Delayed Deep Deterministic Policy Gradients Algorithm (TD3)

may be capable of controlling a robotic manipulator to perform a maneuver that

requires real time adaptation. This work investigates methods that allows the real time

adaptation to occur safely while the robotic arm is fixed to a rocket floating in space.

In addition, deep reinforcement learning requires a large amount of training before the

agent can perform a task sufficiently. Since training the agent in space would require

the robotic arm to move around randomly and unpredictably, training the agent in space

is impractical and unsafe. Therefore, the agent would need to train in an environment

that closely simulates the environment it will experience in space. Training in a real-

world Earth environment is difficult because a large amount of additional work is

required to setup a training environment and this environment will not be able to

simulate zero-gravity that will be experience in space.

 (OpenAI et al., 2019) train their robotic hand in simulation and it is able to perform

in the real-world due to a recurrent neural network in the agent’s architecture allowing

it to meta-learn. This work seeks to demonstrate a model-agnostic meta-learning

method may allow a robotic agent to quickly learn to adapt to the environment of space

without modifying the underlying neural network architecture (Finn et al., 2017;

Rajeswaran et al., 2019).

11

 The experiment to evaluate the artificial intelligent robotic agent’s will be

performed in space on-board a Terrier Improved Malemute Sounding Rocket launched

from NASA’s Wallops Flight Facility in August 2022. This experiment will include

four balls that will be thrown and caught between two robotic arms while at altitudes

between 100 and 150 km above the Earth. The artificial intelligent agent will utilize

the iMAML algorithm to learn how to adapt to the space environment after each catch

attempt. The TD3 algorithm has already been proven to catch balls in a simulated zero-

gravity environment (see Section 4.4), but this experiment will determine if meta-

learning can allow robots to adapt to the real-world zero-gravity environment while

demonstrating how this can be performed safely.

12

4. Artificial Intelligence Subsystem

4.1. Subsystem Overview

The artificial intelligence subsystem is responsible for determining the position of

the ball, predicting the balls position at a set time in the future, determining the ideal

grasp configuration to catch the ball using a deep reinforcement learning algorithm and

then learning how to perform the catch better at the level of gravity currently being

experienced. Figure 4.1 shows a block diagram of the subsystem.

Figure 4.1 - AI Subsystem Flow Diagram

13

The loop begins by detecting the position of the object using computer vision. The

object detection system is discussed in Section 4.2. After the position of the object has

been determined, a Kalman filter determines the position and velocity of the object with

noisy measurements from the object detection system. The Kalman filter is discussed

in more detail in Section 4.3. The position and velocity are used as the observation for

the TD3 deep reinforcement learning algorithm. The TD3 algorithm outputs the grasp

configuration as the action.

The grasp configuration includes the grasp approach vector, trajectory slice, and

grasp time offset. The grasp approach vector is comprised of spherical coordinates

relative to the center of the ball. The gripper will move along this vector to catch the

ball. The trajectory slice 𝑥𝑛 ∈ (0, 1) corresponds to a point along the section of the

object’s trajectory that intersects with the robotic arm’s workspace (Discussed in

Section 4.4). Finally, the grasp time offset is an offset from the predicted time the object

will arrive at the trajectory slice. This offset allows for the grasp vector to originate at

a point slightly ahead or behind the location of the object (Discussed in Section 4.4).

The trajectory predictor converts the normalized trajectory slice into the position

and time the ball is at the agent’s chosen position as discussed in Section 4.5. Once the

future position of the ball is determined, the grasp generator converts the spherical

coordinates relative to the object into positions relative to the base of the catching arm

(Discussed in Section 4.6). Next, inverse kinematics and motion planning are

performed by the ROS MoveIt library to determine the trajectory of each joint required

to attempt the catch. A collision check is also performed to ensure the robotic arm does

14

not collide with any part of the rocket. If the motion planning or collision checking fail,

the TD3 policy is queried with an updated object position so it will generate a new

grasp configuration. Once a successful motion plan has been determined, the grasp is

attempted, and the performance is recorded. In between attempts while the robotic arms

are reloading, the Meta TD3 policy adjusts its parameters to quickly adapt and perform

a better grasp on the next attempt as discussed in Section 4.7.

4.2. Object Detection

The object detection system is responsible for determining the position of the ball

relative to the depth camera. The depth camera is an Intel RealSense D435 that features

stereo imagers, and infrared projector, and an RGB Module. The current object

detection method uses a color filter that generates a mask of the object. Since the ball

is red, it is easy to differentiate the ball from the blue, green, and brown Earth or the

blackness of space that will be present in the background. In addition, the ball is lit up

by a light emitting diode (LED) on the payload to ensure consistent lighting. The object

detection system can detect a moving ball even in front of a background of a similar

color as demonstrated in Figure 4.2.

After the position of the ball in an RGB image is determined, the depth of the object

is determined using the pixel to point function provided by the Intel RealSense software

development kit. Once the position of the ball is determined relative to the camera,

ROS parameters are used to transform that position to a point relative to the desired

origin.

15

Figure 4.2 - Object Detection with Similar Background

4.3. Kalman Filter

The Kalman Filter is a method of estimating states and future states from inaccurate

and uncertain measurements (Becker, 2022; Kalman, R. E., 1960). The filter takes the

measurements and then predicts the next position and velocity. This prediction is then

compared to the next measured state. This allows it to learn how much to trust the

measurements compared to the underlying kinematic equation. Marsha’s Kalman filter

takes measurements until the state of the ball is known to a predetermined precision.

This precision can be adjusted with a hyperparameter that adjusts the tradeoff between

precision and how quickly the position and velocity of the object is determined.

A Multidimensional Kalman Filter is used to estimate the position and velocity of

the object despite being given only a few noisy measurements. The Kalman Filter

16

iteratively updates the estimate of the ball’s position (𝑥𝑡, 𝑦𝑡, 𝑧𝑡), velocity (𝑥̇, 𝑦̇, 𝑧̇) and

the uncertainty of these values (the covariance matrix, 𝑃𝑡) then predicts what these

values will be in the next time step; Where 𝑡 is incremented after each time step. The

filter is initialized with the position of the gripper when the ball is released and a

velocity of 0.75 inches per second toward the catching arm as due to constraints from

NASA that is the desired release velocity. Once the ball is released, the filter begins

polling the object detection’s measured position until the uncertainty of the position is

less than half of the width of the gripper. This ensures the predicted position is precise

enough to fall withing the grasp range of the gripper. Marsha’s Kalman Filter is largely

based off the tutorial provided by (Becker, 2022) who includes the block diagram

shown in Figure 4.3 that demonstrates this process.

Figure 4.3 - Kalman Filter Block Diagram

17

The Kalman Filter designed for Marsha uses vector 𝑧𝑡⃗⃗ ⃗ (Equation 4.1) as the

measured value and Rn as the uncertainty or covariance of the position measurement

which will be found experimentally after the object detection neural network is trained.

The process is begun with initial estimates of the position and velocity state 𝑥𝑡̂

(Equation 4.2) and uncertainty matrix 𝑃𝑡.

𝑧𝑡⃗⃗ ⃗ = [

𝑥𝑡
𝑦𝑡
𝑧𝑡
] (4.1)

𝑥𝑡̂ =

[

𝑥𝑡
𝑦𝑡
𝑧𝑡
𝑥𝑡̇
𝑦𝑡̇
𝑧𝑡̇]

 (4.2)

The next state is predicted with Equation 4.3.

𝑥̂𝑡+1 = 𝐹𝑥𝑡̂ + 𝐺𝑢𝑡⃗⃗ ⃗ (4.3)

Where 𝐹 is a (6 × 6) state transition matrix as shown in Equation 4.4 that provides a

more efficient way to simultaneously calculate the position and velocity along each

axis. It is derived from the kinematic equations for the displacement of a moving object

and the velocity of a moving object with constant acceleration as shown in Equations

4.5 and 5.6 respectively.

𝐹 =

[

1 0 0 ∆𝑡 0 0
0 1 0 0 ∆𝑡 0
0 0 1 0 0 ∆𝑡
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 (4.4)

𝑥𝑡⃗⃗ ⃗ = 𝑥0⃗⃗⃗⃗ + 𝑣 0∆𝑡 +
1

2
𝑎 ∆𝑡2 (4.5)

18

𝑣 𝑡 = 𝑣 0 + 𝑎 ∆𝑡 (4.6)

Continuing with Equation 4.3, 𝑢𝑡⃗⃗ ⃗ is the input variable which in this case is the

acceleration as measured by an accelerometer. The acceleration input variable allows

for predicting the trajectory in gravity and if the rocket still has some angular velocity.

𝑢𝑡⃗⃗ ⃗ is shown in Equation 4.7 and G, the control matrix responsible for calculating the

change in position due to acceleration is shown in Equation 4.8.

𝑢𝑡⃗⃗ ⃗ = [

𝑎𝑥
𝑎𝑦
𝑎𝑧
] (4.7)

𝐺 =

[

1

2
𝛻𝑡2 0 0

0
1

2
∆𝑡2 0

0 0
1

2
∆𝑡2

∆𝑡 0 0
0 ∆𝑡 0
0 0 ∆𝑡]

 (4.8)

While the next state is being predicted, the uncertainty of the next state can be predicted

with Equation 4.9.

𝑃𝑡+1 = 𝐹𝑃𝑡𝐹
𝑇 + 𝐺𝜎𝑎

2𝐺𝑇 (4.9)

Where 𝑃𝑡 and 𝑃𝑡+1 are the uncertainties of the current and next state respectively; F is

the state transition matrix shown in Equation 4.4; G is the control matrix shown in

Equation 4.8; 𝜎𝑎
2 is the process noise variance (the variance of the acceleration

measurements); finally, 𝐹𝑇 and 𝐺𝑇 represent the transpose of the original matrix. The

total predicted uncertainty is provided by the sum of the state estimate covariance

(𝐹𝑃𝑡𝐹
𝑇) and the process noise covariance (𝐺𝜎𝑎

2𝐺𝑇).

After predicting the next state, the estimate of the current state is updated. The

update begins by measuring the state with the object detection system that gives state

19

measurement 𝑧𝑡⃗⃗ ⃗ shown in Equation 4.1. Next the Kalman gain is updated which is a

(6 × 3) matrix calculated with Equation 4.10 that seeks to minimize the estimated

variance. The Kalman gain equation derivation is given by (Becker, 2022).

𝐾𝑡 = 𝑃𝑡−1𝐻
𝑇(𝐻𝑃𝑡−1𝐻

𝑇 + 𝑅)−1 (4.10)

Where 𝐻 is a (6 × 3) matrix given in Equation 4.11 that relates the position

measurement 𝑧 𝑡 to the state estimate 𝑥𝑡̂ which contains the estimated position and

velocity; 𝑅 is a (3 × 3) matrix of the measurement uncertainty. 𝑅 is shown in Equation

4.12 but is simply the variance 𝜎𝑚
2 of the object detection system’s measurement for

each axis which can be found experimentally.

𝐻 = [
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

] (4.11)

𝑅 = [

𝜎𝑚
2 0 0

0 𝜎𝑚
2 0

0 0 𝜎𝑚
2

] (4.12)

After the Kalman gain 𝐾𝑡 is found, the state estimate is updated with Equation 4.13.

𝑥𝑡̂ = 𝑥̂𝑡−1 + 𝐾𝑡(𝑧𝑡⃗⃗ ⃗ − 𝐻𝑥̂𝑡−1) (4.13)

Finally, the uncertainty estimate 𝑃𝑡 is updated with Equation 4.14 and the process

begins again by using the estimated state 𝑥̂𝑡 and uncertainty 𝑃𝑡 to predict the next state

𝑥̂𝑡+1 and uncertainty 𝑃𝑡+1 as given in Equations 4.3 and 4.9 respectively.

20

4.4. Catching Agent

Open AI developed an interface for reinforcement learning algorithms called

OpenAI Gym (Brockman et al., 2016). A custom gym environment was developed for

the task of catching the ball. This custom gym environment is an interface that

translates between the artificial intelligent agent and the ROS system which collects

the percepts and performs the actions for the agent. OpenAI Gym is an open-source

library that has become standard for AI researchers as it is easy to test different

reinforcement learning algorithms on the same environment.

The Stable-Baselines3 implementation of the Twin Delayed Deep Deterministic

Policy Gradients algorithm (TD3) is used to train the catching agent (Raffin et al.,

2021). The catching agent collects the position and velocity percepts from the object

detection system and then outputs the action tuple as shown in Figure 4.4.

Figure 4.4 - Catching Agent Exploration Diagram

(𝑟, 𝜃, 𝜙, 𝑥𝑛 , 𝑔𝑡)

21

 The action tuple is composed of spherical coordinates (𝑟, 𝜃, 𝜙) whose origin is

located at the center of the ball. The grasp generator system then converts the spherical

coordinates to pre-grasp and post-grasp positions relative to the base of the robotic arm

so MoveIt’s inverse kinematics library can determine the motion path for each joint.

The grasp generator system is discussed further in Section 4.6.

 The next index in the action tuple is trajectory slice 𝑥𝑛 ∈ (0, 1) which corresponds

to a point along the section of the object’s trajectory that intersects with the robotic

arm’s workspace (Discussed in Section 4.5). Finally, the grasp time offset is an offset

from the predicted time the object will arrive at the trajectory slice. This offset allows

the for the grasp vector to originate at a point slightly ahead or behind the location of

the object.

 Reinforcement learning uses a reward function to give the agent feedback on which

actions performed well and should be repeated for the percepts that it received. The

reward function that produced the best results for Marsha is given in Equation 4.14.

𝑟 =

{

−4, 𝑖𝑓 𝑝𝑟𝑒 𝑔𝑟𝑎𝑠𝑝 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑓𝑎𝑖𝑙𝑠
−2, 𝑖𝑓 𝑔𝑟𝑎𝑠𝑝 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 𝑓𝑎𝑖𝑙𝑠
−1 ∗ 𝑑𝑔𝑟𝑎𝑠𝑝, 𝑖𝑓 𝑐𝑎𝑡𝑐ℎ 𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙

+10, 𝑖𝑓 𝑐𝑎𝑡𝑐ℎ 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙

 (4.14)

The reward is determined by the state of the environment after the catch is attempted.

In the first state, a reward of -4 is produced if pre-grasp planning fails. This negative

reward punishes the agent for attempting a pre-grasp position that is not kinematically

possible. In the second state, a reward of -2 is produced if the grasp planning fails. This

is produced if the MoveIT rapidly-exploring random tree (RRT) motion planning

22

algorithm can not find a path from the pre-grasp position to the grasp position. This

could be because there is an unavoidable obstacle in the way, or the grasp position is

kinematically impossible. A negative reward is given so the agent learns to avoid

positions that result in failed motion planning. If motion planning fails, the agent is

queried again with an updated position in an attempt to find an action tuple that results

in successful motion planning. Figure 4.5 shows the graph of a training session that

demonstrated the agent’s ability to learn how to decrease the number of motion

planning attempts.

Figure 4.5 - AI Learning Kinematic Possible Catches

In Figure 4.5, actions are sampled from a uniform random distribution for the first six

hundred episodes in order to improve exploration (Achiam, 2018; Raffin et al., 2021)

(Figure 4.5 is smoothed to improve readability). After episode seven hundred, the agent

is able to return actions that result in kinematically possible grasps in almost one

planning attempt each time. Each episode corresponds to a single ball throw. The

episode ends if motion planning is successful, the ball moves out of reach (occurs after

23

approximately five planning attempts), or twenty failed motion planning attempts have

occurred.

 Continuing with Equation 4.14, if motion planning is successful, but the gripper

does not close around the ball, a reward is produced that is negatively proportional to

the distance between the object and the end effector at the time the gripper closes. The

final case occurs if everything goes well and the catch is successful. A successful catch

results in a large positive reward of +10. The catch AI has shown promising results as

Figure 4.6 demonstrates.

Figure 4.6 - Average Reward During Training Session ; Light gray displays the

exact reward received during training (10 represents a catch); Dark gray displays a

moving average for the reward indicating an increase in catch frequency as training

continues.

24

4.5. Trajectory Prediction

The trajectory prediction system is responsible for determining the position and

time of the object at the agent’s desired trajectory slice. The trajectory slice 𝑥𝑛 ∈ (0, 1)

is centered around the base of the robotic arm so 𝑥𝑛 = 0.5 is the point along the

trajectory that is closest to the base of the robotic arm. When 𝑥𝑛= 0 or 1 the agent will

attempt the grasp at a point along the trajectory at the end of the reach of the robotic

arm. This ensures any trajectory slice the agent selects will be within the workspace of

the robotic manipulator.

Multiple trajectory prediction methods were developed for Marsha, but the best

performing one was named the second order distance minimization with binary search

method as it is efficient and will work with or without gravity. The goal of this method

is to denormalize the trajectory slice 𝑥𝑛 that is given by the TD3 agent. Therefore, the

time the object is at 𝑥𝑛 = 0, 𝑥𝑛 = 0.5, and 𝑥𝑛 = 1 must be found which is demonstrated

in Figure 4.7.

Figure 4.7 - Trajectory Slice Denormalization

The first step is finding the time the object is at the point on its trajectory closest to

the base of the robotic arm as denoted by 𝑡𝑐 in Figure 4.7. Since the object follows the

kinematic equation for the displacement of a moving object as given in Equation 4.5,

𝑥𝑛 = 0

𝑡𝑐

𝑏⃗

𝑥𝑛 = 0.5 𝑥𝑛 = 1

𝑑𝑟 𝑑𝑟

𝑥𝑡⃗⃗ ⃗

𝑣𝑡⃗⃗ ⃗

25

the distance between the ball and the base of the robotic arm at a given time can be

calculated with Equation 4.15. Equation 4.15. assumes the values of 𝑥0⃗⃗⃗⃗ , 𝑣0⃗⃗⃗⃗ , and 𝑎 have

been found with the Kalman filter and the base of the robotic arm is at the origin.

Equation 4.16 references the individual indexes of the vectors used in Equation 4.5

which are given in Equation 4.15.

𝑥𝑡⃗⃗ ⃗ = 𝑥0⃗⃗⃗⃗ + 𝑣0⃗⃗⃗⃗ ∆𝑡 +
1

2
𝑎 ∆𝑡2 (4.5)

𝑥0⃗⃗⃗⃗ = [

𝑥0
𝑦0
𝑧0
] 𝑣0⃗⃗⃗⃗ = [

𝑥̇0
𝑦̇0
𝑧̇0

] 𝑎 = [
𝑥̈
𝑦̈
𝑧̈
] (4.15)

𝑑(𝑡) = √(𝑥0 + 𝑥̇0𝛥𝑡 + 𝑥̈𝛥𝑡
2)2 + (𝑦0 + 𝑦̇0𝛥𝑡 + 𝑦̈𝛥𝑡

2)2 + (𝑧0 + 𝑧̇0𝛥𝑡 + 𝑧̈𝛥𝑡
2)2 (4.16)

To find the time 𝑡𝑐 when the ball is closest to the base of the robotic arm, the function

𝑑(𝑡) would need to be minimized. The minimum could be found by finding the time

when 𝑑′(𝑡) = 0 and 𝑑′′(𝑡) > 0. Since the derivative could be calculated beforehand,

the program would only need to find the roots for a third and fourth order equation

with known coefficients. While this could be possible by finding the approximate

solution with the Newton-Raphson method, a simpler approach can be used

(Raphson, 1697; Smit, 2021).

 The simpler approach stems from the binary search algorithm commonly used to

search for a value in a sorted array (Lin, 2019). While, the binary search algorithm is

normally used for a discrete set of values, a variant of the algorithm can be used to

approximate the second order d(t) function. This variant includes recursively finding

the time the object is closest to the base of the arm with a given range and then

reducing the range. The algorithm is shown below in c++:

26

 typedef Eigen::Matrix<float, 3, 1> Vector3f;

float distance(float t) {

 Vector3f obj_pos = x_0 + v_0*t + 0.5*a*t*t;

 Vector3f robot_base(0, 0, 0);

 // x_n = 0 and x_n = 1 can be found by setting desired_dist

 // to the reach of the arm

 return eigen_dist(robot_base, obj_pos) – desired_dist;

 }

 float binarySearch(float before_time, float after_time) {

 float mid_time = before_time + (after_time – before_time) / 2;

 float mid_dist = distance(mid_time);

 float after_dist = distance(after_time);

 float before_dist = distance(before_time);

 // if not much change occurs local minimum has been reached

 if (abs(after_dist - before_dist) < EPSILON) {

 return mid_time;

 }

 if (mid_dist < before_dist and mid_dist < after_dist) {

 if (before_dist < after_dist) {

 return binarySearch(before_time, (mid_time + after_time) / 2);

 }

 else {

 return binarySearch((mid_time + before_time) / 2, after_time);

 }

 }

 // mid_dist is also less than before_dist

 if (mid_dist > after_dist) {

 return binarySearch((mid_time + before_time) / 2, after_time);

 }

 if (mid_dist > before_dist) {

 return binarySearch(before_time, (mid_time + after_time) / 2);

 }
}

27

 To evaluate the validity of the algorithm, multiple unit tests were performed as

well as an experiment in excel. Figures 4.8 and 4.9 demonstrate a 2D version of the

algorithm.

0

5

10

15

20

25

30

35

40

45

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

D
is

ta
n

ce

Time

Distance before_dist after_dist

-12

-10

-8

-6

-4

-2

0

2

4

6

-12 -10 -8 -6 -4 -2 0 2 4 6 8

Y
P

o
si

ti
o

n

X Position

Figure 4.8 - 2D Trajectory of an Object

Distance from Object to Robot Base

28

Figure 4.8 shows the trajectory of an object that follows Equations 4.16 and 4.17.

𝑥 = 𝑥0 + 𝑣𝑥 ∗ 𝑡 𝑥0 = −10, 𝑣𝑥 = 6 (4.16)

𝑦 = 𝑦0 + 𝑣𝑦 ∗ 𝑡 + 𝑎𝑦 ∗ 𝑡
2 𝑦0 = 0, 𝑣𝑦 = 10, 𝑎𝑦 = −10 (4.17)

The distance between the object and the base of the arm (assuming the base is at the

origin) was calculated with Equation 4.15, but with the z axis excluded for simplicity.

As Figure 4.9 shows, the orange and grey dots represent the binarySearch algorithm

quickly converging on the minimum value.

4.6. Grasp Generator

The 6-DOF GraspNet (Mousavian et al., 2019) is a method to generate a grasp from

a 3D point cloud of a non-uniform shaped object with a variational autoencoder.

MARSHA’s grasp generator is designed to be easily replaced by the 6-DOF GraspNet

therefore enabling MARSHA to catch objects of varying shape (assuming the trajectory

is properly learned or calculated). The grasp generator emulates the decoder by using

spherical coordinates (r, θ, Φ) as the “latent space.” Instead of the grasp evaluator

iterating through generated grasps, MARSHA’s grasp evaluator (aka the actor network)

uses the latent space as actions that then generate the grasp. The grasp generator

transforms these spherical coordinates to a quaternion that rotates the robot’s

orientation. The following algorithm performs the conversion:

29

 geometry_msgs::Pose generate(float normalized_r, float theta, float phi)

 {

 geometry_msgs::Pose pose;

 float radius = convert_radius(normalized_r);

 tf::Vector3 wrist_vector = polar_to_rect(radius, theta, phi);

 wrist_vector.normalize();

 tf::Vector3 z = tf::Vector3(0, 0, 1);

 tf::Vector3 rot_axis = wrist_vector.cross(z);

 float rot_angle = acos(wrist_vector.dot(z));

 tf::Vector3 other_axis = rot_axis.cross(z);

 float dot_product = other_axis.dot(wrist_vector);

 if (dot_product < 0) {

 rot_angle = M_PI - rot_angle;

 }

 return tf::Quaternion(rot_axis.normalized(), rot_angle);

 }

4.7. Meta TD3 Algorithm

The artificial intelligence responsible for the catch is powered by an algorithm that

combines the TD3 and iMAML algorithms. The individual algorithms are discussed in

Sections 2.5 and 2.6 respectively. While OpenAI’s Rubix cube solver (OpenAI et al.,

2019) implements meta learning with a long short-term memory architecture (LSTM),

this work uses a model-agnostic meta-learning (MAML) approach as it can be

implemented with any model or algorithm (Finn et al., 2017). However, MAML is

inefficient because it includes taking the gradient of the gradient descent algorithm, so

MAML’s successor, model-agnostic meta-learning with implicit gradients (iMAML)

was implemented for Marsha (Rajeswaran et al., 2019).

30

Both MAML and iMAML algorithm learn a meta-model 𝜃 that is used to initialize

multiple mesa-models 𝜙𝑖. The mesa-models are initialized with the same weights as

the meta-model, but then retrained to perform better on a specific task. After the mesa

models have been trained the meta-model is updated using the results from each

training session. This is repeated for multiple tasks or environments until the meta-

model learns parameters that can be trained with a few shots to succeed in an unseen

task or environment.

For Marsha, the Stable-Baselines3 implementation of the TD3 algorithm is used to

train the mesa-models. The iMAML algorithm was implemented in python to train the

meta-model. The iMAML algorithm is shown in Algorithm 4.9.

Algorithm 4.9 - iMAML Algorithm (Rajeswaran et al., 2019)

The outer step size η is the gradient descent step size for the meta-model; The

regularization strength 𝜆 is a hyperparameter that represents how close the mesa-

parameters will be to the meta-parameters; 𝐵 represents the number of tasks; Τ𝑖

31

represents a single task; 𝜃 represents the meta-parameters; ∇̂𝐹(𝜃) is the gradient the

will produce the updated meta-parameters when applied with gradient descent; The

optimization accuracy thresholds 𝛿 and 𝛿′ represent how close the mesa-parameters

and meta-parameters should get to the optimal solution; ℒΤ(𝜙𝑖) represents the test loss

from mesa-training; 𝑰 is the identity matrix; and ℒ̂Τ(𝜙𝑖) represents the training loss

from mesa-training.

 To use iMAML with the TD3 algorithm, the three TD3 networks (actor and two

critics) need to be meta-learned. However, each network has a different way of

calculating the loss functions. The actor network loss is calculated with Equation 4.18

(Fujimoto et al., 2018).

ℒ𝑎𝑐𝑡𝑜𝑟 = −1 ∗ 𝑎𝑣𝑔(𝑄𝑐𝑟𝑖𝑡𝑖𝑐1, 𝑄𝑐𝑟𝑖𝑡𝑖𝑐2) (4.18)

Where the Q values are produced by the main critic networks not the target networks.

The loss for the critic networks is calculated with Equation 4.19 (Fujimoto et al., 2018).

ℒ𝑐𝑟𝑖𝑡𝑖𝑐 = 𝑀𝑆𝐸(𝑄1𝑡𝑎𝑟𝑔𝑒𝑡, 𝑄1𝑚𝑎𝑖𝑛) + 𝑀𝑆𝐸(𝑄2𝑡𝑎𝑟𝑔𝑒𝑡, 𝑄2𝑚𝑎𝑖𝑛) (4.19)

Where 𝑀𝑆𝐸 is the mean squared error, 𝑄1 is the Q-value produced by the first TD3

critics, and 𝑄2 is the Q-value produced by the second TD3 critic. Figure 4.10 gives a

visual for how the losses relate to the different networks.

32

Figure 4.10 - Meta-TD3 Training

The appendix shows the entire python file that was written for Marsha that combines

the iMAML and TD3 algorithms.

5. Discussion

This work showed that the TD3 algorithm could successfully control a robotic arm

to catch a ball in a simulated zero-gravity environment and learn kinematically possible

grasp configurations. Current tests resulted in a successful catch occurring 69% of the

time after training for one thousand episodes. However, there was little work put into

adjusting hyperparameters to receive a better catch rate. This was a large project so

other sections of the project required immediate attention. It is highly likely this success

rate can be improved.

This work also produced the second order distance minimization with binary search

algorithm which quickly calculates the minimum distance between a moving object

33

and a point in space. The Meta-TD3 algorithm was also developed and to my

knowledge has not been done before. The effectiveness of the Meta-TD3 algorithm will

continue to be tested over the summer of 2022 and a final test will be conducted from

150km above the Earth on-board a Terrier Improved Malemute Rocket.

For the artificial intelligence system, I developed a custom OpenAI gym

environment to interface the agent with the rest of the Marsha system. OpenAI gym is

the standard for AI researchers to develop reinforcement learning algorithms that

interact with different environments (Brockman et al., 2016). I developed the Marsha

robotic subsystem so it can easily be adapted to any robot (as demonstrated by

implementing it on the AR3 and two arm2d2 robots). This means AI researchers

experienced with the gym interface would not need to have experience with ROS to

test new reinforcement learning algorithms on robots that have the Marsha system

installed. On the other hand, ROS engineers would not need to have experience with

AI to test new control methods for an AI controlled robotic system. Currently, I have

integrated Marsha on the AR3 that Chris Annin donated to Northwest Nazarene

University and the dual Arm2d2 arms that have been developed by the Rocksat team.

However, it may be difficult for Northwest Nazarene University to continue the work

I began researching adaptive Astro-robotics. It is currently difficult for students at NNU

to gain the knowledge I was able to learn to complete such a project. While I attempted

to create a level of abstraction so computer science and engineering students could

collaborate on the software without needing to learn the other discipline, the two

disciplines may have become too intertwined in the modern age to work in similar

34

fields without knowledge in both disciplines. If NNU wishes to continue researching

innovative technology in adaptive astro-robotics and produce students who excel in

similar fields, a better path must be created for students to gain knowledge in both

disciplines. In addition, it may be beneficial to develop curriculum for advanced

artificial intelligence techniques such as deep reinforcement learning. Although there

is not a standard textbook on the subject, the OpenAI Spinning Up repository is a great

resource (Achiam, 2018).

Future versions of Marsha should implement the following features that will allow

intelligent astro-robotic arms to catch non-uniform shaped objects such as tools,

components, or spacecraft. The first feature that should be implemented is the 6-DOF

grasp net (Mousavian et al., 2019). The TD3 catch agent’s action should be the latent

space for the grasp net’s decoder. Therefore, the catch agent will learn to grasp different

points on the object. A different gripper will also be required to perform this. Two-

fingered grippers are commonly used to perform such grasps, however it may be

difficult to get the precision required to grasp a moving object in space with a two-

fingered gripper. Perhaps a soft robotic gripper could be used to grasp moving objects

with less precision. The soft robotic gripper could also feature AI for soft robotic

sensing or actuation (Kim et al., 2021). The final addition required for Marsha to catch

non-uniform shaped objects, is an updated trajectory predictor system. The current

trajectory predictor system assumes the object is a point, however non-uniform shaped

objects can rotate. The Kalman filter and trajectory slice denormalizers will still be

useful, but an additional system will need to predict how a specific point on the object

35

will move as it rotates through space. Perhaps the PointNet++ architecture could be

combined with a recurrent neural network to predict the future rotation of a 3D-point

cloud object. Meta-learning will also play an important role in learning how different

objects move and react to touch in zero-gravity.

Implementing iMAML was a difficult task as the MAML paper provided

instructions for reinforcement learning, but the iMAML paper did not. I had to come

up with a method to incorporate the iMAML paper with reinforcement learning and the

TD3 algorithm, which to my knowledge has not been done before. Additionally, the

Stable-baselines3 implemented TD3 with PyTorch, but I only had experience with

Tensorflow at the time I worked on the Meta-TD3 algorithm. I was able to convert

between PyTorch and Tensorflow, but it would be much better to re-write the Meta-

TD3 algorithm in PyTorch.

 I also believe that future attempts at creating safe AI controlled Astro-robots should

use the TD3 algorithm or similar algorithms. The essential part of the TD3 algorithm

is its ability to be deterministic. Therefore, the AI agent will produce the same action

every time it receives the same perception. This allows the agent to be properly tested

before it performs in a safety-critical application. In addition, I found that using AI to

control the robot in a high level was important. Using AI to determine how the agent

grasped the ball performed much better than creating an agent that is responsible for

controlling the individual joints or the position of the end effector. This allowed for

inverse kinematics and collision checking to still be used.

36

References

Achiam, J. (2018). Spinning Up in Deep Reinforcement Learning.

https://spinningup.openai.com/en/latest/index.html

Barto, A. G. (2007). Temporal difference learning. Scholarpedia, 2(11), 1604.

https://doi.org/10.4249/scholarpedia.1604

Becker, A. (2022). Online Kalman Filter Tutorial. https://www.kalmanfilter.net/

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., &

Zaremba, W. (2016). OpenAI Gym. ArXiv:1606.01540 [Cs].

http://arxiv.org/abs/1606.01540

Cutler, M., & How, J. P. (2015). Efficient reinforcement learning for robots using

informative simulated priors. 2015 IEEE International Conference on Robotics

and Automation (ICRA), 2605–2612. https://doi.org/10.1109/ICRA.2015.7139550

Finn, C., Abbeel, P., & Levine, S. (2017). Model-Agnostic Meta-Learning for Fast

Adaptation of Deep Networks. ArXiv:1703.03400 [Cs].

http://arxiv.org/abs/1703.03400

Fujimoto, S., van Hoof, H., & Meger, D. (2018). Addressing Function Approximation

Error in Actor-Critic Methods. ArXiv:1802.09477 [Cs, Stat].

http://arxiv.org/abs/1802.09477

Gao, Y., Tebbe, J., & Zell, A. (2021). Optimal Stroke Learning with Policy Gradient

Approach for Robotic Table Tennis. ArXiv:2109.03100 [Cs].

http://arxiv.org/abs/2109.03100

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.

Kim, D., Kim, S.-H., Kim, T., Kang, B. B., Lee, M., Park, W., Ku, S., Kim, D., Kwon, J.,

37

Lee, H., Bae, J., Park, Y.-L., Cho, K.-J., & Jo, S. (2021). Review of machine

learning methods in soft robotics. PLOS ONE, 16(2), e0246102.

https://doi.org/10.1371/journal.pone.0246102

Koos, S., Mouret, J.-B., & Doncieux, S. (2010). Crossing the reality gap in evolutionary

robotics by promoting transferable controllers. Proceedings of the 12th Annual

Conference on Genetic and Evolutionary Computation, 119–126.

https://doi.org/10.1145/1830483.1830505

Lin, A., & al. (2019). Binary search algorithm. WikiJournal of Science, 2(1), 5.

https://doi.org/10.15347/WJS/2019.005

Mahmood, A. R., Korenkevych, D., Vasan, G., Ma, W., & Bergstra, J. (2018).

Benchmarking Reinforcement Learning Algorithms on Real-World Robots.

ArXiv:1809.07731 [Cs, Stat]. http://arxiv.org/abs/1809.07731

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., &

Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning.

ArXiv:1312.5602 [Cs]. http://arxiv.org/abs/1312.5602

Mousavian, A., Eppner, C., & Fox, D. (2019). 6-DOF GraspNet: Variational Grasp

Generation for Object Manipulation. 2019 IEEE/CVF International Conference

on Computer Vision (ICCV), 2901–2910.

https://doi.org/10.1109/ICCV.2019.00299

OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B., Petron,

A., Paino, A., Plappert, M., Powell, G., Ribas, R., Schneider, J., Tezak, N.,

Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba, W., & Zhang, L. (2019).

Solving Rubik’s Cube with a Robot Hand. ArXiv:1910.07113 [Cs, Stat].

38

http://arxiv.org/abs/1910.07113

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., & Dormann, N. (2021).

Stable-Baselines3: Reliable Reinforcement Learning Implementations. 8.

Rajeswaran, A., Finn, C., Kakade, S., & Levine, S. (2019). Meta-Learning with Implicit

Gradients. ArXiv:1909.04630 [Cs, Math, Stat]. http://arxiv.org/abs/1909.04630

Raphson, J. (1697). Analysis Eequationum Universalis.

https://archive.org/details/bub_gb_4nlbAAAAQAAJ

Smit, A. (2021). Program for Newton Raphson Method.

https://www.geeksforgeeks.org/program-for-newton-raphson-method/

van Hasselt, H., Guez, A., & Silver, D. (2015). Deep Reinforcement Learning with

Double Q-learning. ArXiv:1509.06461 [Cs]. http://arxiv.org/abs/1509.06461

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3), 279–292.

https://doi.org/10.1007/BF00992698

39

Appendix

The code for the project is available in a public Github repository:

https://github.com/aborger/Marsha

The repository is split into two branches (Auxiliary-Platform and Embedded-Platform).

The Auxiliary-Platform features programs and launch files to control the experiment from

an auxiliary computer in a lab setting. The Embedded-Platform features the program and

launch files that are stored on the Jetson Nanos and is used in the final flight code. Within

these branches there are several packages. The following section gives an overview of the

important files within the marsha-ai package.

AI_node.py

The AI node is the top level program to run the TD3 algorithm.

https://github.com/aborger/Marsha/blob/Embedded-Platform/marsha_ai/nodes/ai_node

gym_env.py

The gym environment file controls the Open AI gym environment.

https://github.com/aborger/Marsha/blob/Embedded-Platform/marsha_ai/src/marsha_ai/catch_bandit/gym_env.py

https://github.com/aborger/Marsha
https://github.com/aborger/Marsha/blob/Embedded-Platform/marsha_ai/nodes/ai_node

40

catch_interface.py

The catch interface provides an interface between the gym environment and the Move

Interface that controls the robot. This interface is largely responsible for performing the

catch.

https://github.com/aborger/Marsha/blob/Embedded-Platform/marsha_ai/src/marsha_ai/catch_bandit/catch_interface.py

trajectory_predictor_kalman.cpp

This trajectory predictor uses the Kalman filter and the second order distance

minimization with binary search algorithm to estimate the position and velocity and

predict the future position of the ball.

https://github.com/aborger/Marsha/blob/Embedded-Platform/marsha_ai/nodes/trajectory_predictor_kalman.cpp

kalman_filter.h

The Kalman filter file uses the c++ eigen library to implement a Kalman filter.

https://github.com/aborger/Marsha/blob/Embedded-Platform/marsha_ai/include/marsha_ai/kalman_filter.h

object_dynamics.h

The object dynamics file finds the position along the object’s trajectory that is closest

to the base of the robotic arm and the positions at the end of the reach of the arm. This

file includes two methods, the Newton Raphson Method, and the second order distance

minimization with binary search algorithm method that is far less complex and gave

better results.

https://github.com/aborger/Marsha/blob/Embedded-Platform/marsha_ai/include/marsha_ai/object_dynamics.h

41

grasp_generator.cpp

The grasp generator file converts spherical coordinates from the TD3 agent into grasp

positions.

https://github.com/aborger/Marsha/blob/Embedded-Platform/marsha_ai/nodes/grasp_generator.cpp

meta_td3.py

The meta TD3 file combines the iMAML and TD3 algorithms to allow the catching

agent to continue learning in space.

https://github.com/aborger/Marsha/blob/Embedded-Platform/marsha_ai/src/marsha_ai/meta_td3.py

